Tips and Tricks for Optimizing Corridor Processing Speeds
Optimizing Corridor Processing Speeds

• Break Up “Long” Corridors into separate dgn files.
 • Things to consider are:
 • The number of intersections, ramps, and entrances.
 • Urban vs. Rural
 • Length of Corridor
Optimizing Corridor Processing Speeds

• **When to Activate the Existing Surface?**
 • End Condition draw to the “active” existing surface which takes a majority of the corridor processing time.
 • Consider deactivating the Active surface when not working on end conditions.
Optimizing Corridor Processing Speeds

- **Clipping the Existing Terrain?**
 - Corridor Modeler evaluates the entire active surface’s width.
 - Clipping the width of the terrain to a reasonable width.

[VIDEO]
Optimizing Corridor Processing Speeds

- Vertical Point Controls and Existing Ground Profiles
 - Consider using template point constraints instead of profiles attached to alignments
Optimizing Corridor Processing Speeds

- What is the “Right” Setting for Template Drop Intervals?
 - What is the maximum distance along a tangent piece of geometry where there are no changes in horizontal geometry, vertical geometry, superelevation, or external point controls?
 - This question won’t fit in the dialog prompt.
Optimizing Corridor Processing Speeds

What is a Template Drop Multiplier?

- Used by Corridor Design Stages, this “Multiplier” modifies the number of template drops on your corridor.
Optimizing Corridor Processing Speeds

• **Utilizing Critical Sections Effectively**

 • Critical Section settings are key to controlling:
 • The speed of processing
 • The accuracy of the model
Optimizing Corridor Processing Speeds

- **Use Template Intervals to Your Advantage**

- On large Corridors with many template drops, consider changing the intervals to large numbers in areas where you are not currently designing.

- This will dramatically increase your processing times.
Optimizing Corridor Processing Speeds

• **Limit Use of Meshes**

 • Terrain models can be built more efficiently using graphical terrain filters.
Optimizing Corridor Processing Speeds

• Using the “Final” Design Stage

• Generally not necessary when doing normal design work.
Optimizing Corridor Processing Speeds

• What are Corridor Rules?

• Corridor Rules - aka - “The Padlock” are used to turn on or off the ability of the Corridor to process when changes are made to settings associated with the Corridor(s).
Optimizing Corridor Processing Speeds

• **Limit Number of Clipping References.**

 • Adding clipping references to corridors is supported but will slow processing times dramatically at this time.
Optimizing Corridor Processing Speeds

• Choose Parametric Constraints First.

• Use Parametric Constraints where possible to utilize the fastest processing times.
Optimizing Corridor Processing Speeds

• Limit the Number of Corridor References.

• Corridor references developed from Survey can create a lot of additional processing time

• Do not add alignments as references to the Corridor unless you need them
Optimizing Corridor Processing Speeds

- **Dynamic XS View...Use When Needed.**
 - The Dynamic XS View requires the Corridors to Process
 - Do not leave Dynamic XS View open, before exiting dgn file, close Dynamic XS View, and save settings
Optimizing Corridor Processing Speeds

• Superelevation Lane Objects...Avoid the “Fill”.

 • Using the fill setting requires a lot of additional processing
 • Use the boundary setting instead
Optimizing Corridor Processing Speeds

• **Nesting Depths – Not the kind in a tree branch!**

 • Avoid using a nested Depth greater than zero unless the program automatically sets it greater.

 • MoDOT already sets the default Nested Depth setting to Zero in their Workspace.